Proteome-wide analysis in Saccharomyces cerevisiae identifies several PHD fingers as novel direct and selective binding modules of histone H3 methylated at either lysine 4 or lysine 36.

نویسندگان

  • Xiaobing Shi
  • Ioulia Kachirskaia
  • Kay L Walter
  • Jen-Hao A Kuo
  • Aimee Lake
  • Foteini Davrazou
  • Steve M Chan
  • David G E Martin
  • Ian M Fingerman
  • Scott D Briggs
  • LeAnn Howe
  • Paul J Utz
  • Tatiana G Kutateladze
  • Alexey A Lugovskoy
  • Mark T Bedford
  • Or Gozani
چکیده

The PHD finger motif is a signature chromatin-associated motif that is found throughout eukaryotic proteomes. Here we have determined the histone methyl-lysine binding activity of the PHD fingers present within the Saccharomyces cerevisiae proteome. We provide evidence on the genomic scale that PHD fingers constitute a general class of effector modules for histone H3 trimethylated at lysine 4 (H3K4me3) and histone H3 trimethylated at lysine 36 (H3K36me3). Structural modeling of PHD fingers demonstrates a conserved mechanism for recognizing the trimethyl moiety and provides insight into the molecular basis of affinity for the different methyl-histone ligands. Together, our study suggests that a common function for PHD fingers is to transduce methyl-lysine events and sheds light on how a single histone modification can be linked to multiple biological outcomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Yng1p plant homeodomain finger is a methyl-histone binding module that recognizes lysine 4-methylated histone H3.

The ING (inhibitor of growth) protein family includes a group of homologous nuclear proteins that share a highly conserved plant homeodomain (PHD) finger domain at their carboxyl termini. Members of this family are found in multiprotein complexes that posttranslationally modify histones, suggesting that these proteins serve a general role in permitting various enzymatic activities to interact w...

متن کامل

Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding modules with preference for unmodified H3K4 and methylated H3K9.

A major challenge in chromatin biology is to understand the mechanisms by which chromatin is remodeled into active or inactive states as required during development and cell differentiation. One complex implicated in these processes is the nucleosome remodeling and histone deacetylase (NuRD) complex, which contains both histone deacetylase and nucleosome remodeling activities and has been impli...

متن کامل

High conservation of the Set1/Rad6 axis of histone 3 lysine 4 methylation in budding and fission yeasts.

Histone 3 lysine 4 (H3 Lys(4)) methylation in Saccharomyces cerevisiae is mediated by the Set1 complex (Set1C) and is dependent upon ubiquitinylation of H2B by Rad6. Mutually exclusive methylation of H3 at Lys(4) or Lys(9) is central to chromatin regulation; however, S. cerevisiae lacks Lys(9) methylation. Furthermore, a different H3 Lys(4) methylase, Set 7/9, has been identified in mammals, th...

متن کامل

Allosteric Remodelling of the Histone H3 Binding Pocket in the Pygo2 PHD Finger Triggered by Its Binding to the B9L/BCL9 Co-Factor

The Zn-coordinated PHD fingers of Pygopus (Pygo) proteins are critical for beta-catenin-dependent transcriptional switches in normal and malignant tissues. They bind to methylated histone H3 tails, assisted by their BCL9 co-factors whose homology domain 1 (HD1) binds to the rear PHD surface. Although histone-binding residues are identical between the two human Pygo paralogs, we show here that P...

متن کامل

Decoding of Methylated Histone H3 Tail by the Pygo-BCL9 Wnt Signaling Complex

Pygo and BCL9/Legless transduce the Wnt signal by promoting the transcriptional activity of beta-catenin/Armadillo in normal and malignant cells. We show that human and Drosophila Pygo PHD fingers associate with their cognate HD1 domains from BCL9/Legless to bind specifically to the histone H3 tail methylated at lysine 4 (H3K4me). The crystal structures of ternary complexes between PHD, HD1, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 4  شماره 

صفحات  -

تاریخ انتشار 2007